© B.R.I.D.G.E. ENGINEERING  s.r.l. (Building Research Innovation Development Green Energy) Startup Innovativa

fc0d03503ac38cbd33875938554a048d108d7164

BIBLIOGRAFIA

 

BIBLIOGRAFIA SALI FUSI

 

[1] J.F. Manwell, J.G. McGowan and A.L. Rogers; Wind Energy Explained-Theory, Design and Application, second edition, John Wiley and sons Ltd., UK, 2009.

 

[2] M.J. Pasqualetti, Morality, space, and the power of wind-energy landscapes, Geographical Review, 90, 2000, 381-394.

 

[3] D.G. Fink and H.W. Beaty, Standard Handbook for Electrical Engineers, Eleventh Edition, McGraw-Hill, New York, 1978.

 

[4] R. Bertani, Geothermal Energy: An Overview on Resources and Potential, Proceedings of the International Conference on National Development of Geothermal Energy Use, 2009, Slovakia.

 

[5] T.A. Volk, L.P. Abrahamson, E.H. White, E. Neuhauser, E. Gray, C. Demeter, C. Lindsey, J. Jarnefeld, D.J. Aneshansley, R. Pellerin and S. Edick, Developing a Willow Biomass Crop Enterprise for Bioenergy and Bioproducts in the United States, Proceedings of Bioenergy 2000, October 15-19, 2000, Buffalo, New York, USA

 

[6] M. Asplund, N. Grevesse and A.J. Sauval, The new solar abundances-Part I: the observations, Communications in Asteroseismology, 147, 2006, 76-79.

 

[7] D.R.Williams, Sun Fact Sheet, NASA, 2004, http://nssdc.gsfc.nasa.gov/planetary/factsheet/sunfact.html

 

[8] U. Herrmann, Survey of Thermal Energy Storage for Parabolic Trough Power Plants, Journal of Solar Energy Engineering, 124, 2002, 145-152

 

[9] Rocket Research Company, Chemical energy storage for solar thermal conversion, SAND79-8198, Livermore, Sandia National Laboratories, 1979.

 

[10] A. Steinfeld and R. Palumbo, Solar thermochemical process technology, Encyclopedia of Physical Science and Technology, 2001, 237-256

 

[11] E.A. Fletcher, Solar thermal processing: a review, Journal of Solar Energy Engineering, 2001, 63-74

 

[12]. R. W. Bradshaw and Nathan P. Siegel, Molten Nitrate Salt Development for Thermal Energy Storage in Parabolic Trough Solar Power Systems, of the Energy Sustainability 2008 Conference, August 10-14, 2008, Jacksonville, Florida USA

 

[13] B. Kelly, H. Price, D. Brosseau and D. Kearney, Adopting Nitrate/Nitrite Salt Mixtures as the Heat Transport Fluid in Parabolic Trough Power Plants, Proceedings of the Energy Sustainability 2007 Conference, June 27-30, 2007, Long Beach, CA.

 

[14] H. Reilly and G. Kolb, Evaluation of Molten Salt Power Tower Technology Based on Experience at Solar Two, SAND2001-3674, Sandia National Laboratories, 2001.

 

[15] T. Wendelin, “Parabolic Trough VSHOT Optical Characterization in 2005-2006,” NREL, www.nrel.gov/docs/fy06osti/40024.pdf.

 

[16] R.B. Diver, C. Andraka, S. Rawlinson, V. Goldberg and G. Thomas, The Advanced Dish Development System Project, ASME Proceedings of Solar Forum 2001, Washington, D.C

 

[17] S. D. Odeh, G. L. Morrison and M. Behnia, Modelling of parabolic trough direct steam generation solar collectors, Solar Energy, 62, 1998, 396-406

 

[18] V. Heinzel, H. Kungle and M. Simon, Simulation of a parabolic trough collector, ISES Solar World Congress, Harare, Zimbabwe, 1-10

 

[19] S. D. Odeh, G. L. Morrison and M. Behnia, Modeling of Parabolic Trough Direct Generation Solar Collectors, Solar Energy, 62, 1998, 395-406

 

[20] Ezzat, Optimum Working Fluids for Solar Powered Rankine Cycle Cooling of Buildings, Solar energy, 25, 1980, 235-241

 

[21] R. G. Reddy, Ionic Liquids: How well do we know them?, editorial, Journal of Phase Equilibria and Diffusion, 27, 2006, 210-211.

 

[22] M. Zhang and R. G. Reddy, Application of [C4min][Tf2N] Ionic Liquid as Thermal Storage and Heat Transfer Fluids, editor J. Weidner, ECS Transactions, 2 (28), 2007, 27-32.

 

[23] M. Zhang and R. G. Reddy, Evaluation of Ionic Liquids as Heat Transfer Materials in Thermal Storage Systems, Energy: Energy Materials, editors: F. Dogan, M. Awano, D. Singh and B. Tuttle, ASM International, Materials Park, Ohio, USA MS&T‟07, 2007, 151-160.

 

[24] R. G. Reddy, Novel Applications of Ionic Liquids in Materials Processing, Advanced Structural and Functional Materials Design 2008, Journal of Physics: Conference Series (JPCS), 165, 2009, 1-6.

 

[25] R.W. Bradshaw and D.E. Meeker, High-temperature stability of ternary nitrate molten salts for solar thermal energy systems, Solar Energy Materials, 21, 1990, 51-60

 

[26] A.S. Trunin, Designing and investigations of salt systems for solar energy utilization, Utilization of sun and other radiation sources in materials research. Kiev: Naukova Dumka; 1983. p. 228-38

 

[27] D. J. Rogers and G. J. Janz, Melting-crystallization and premelting properties of sodium nitrate-potassium nitrate. Enthalpies and heat capacities, Journal of Chemical and Engineering Data, 27, 1982, 424-428

 

[28] D. Kearney, U. Herrmann, P. Nava and B. Kelly, Assessment of a molten salt heat transfer fluid in a parabolic trough solar field, Journal of Solar Energy Engineering, 125, 2003, 170-176.

 

[29] Q. Peng, J. Ding, X. Wei, J. Yang and X. Yang, The preparation and properties of multi-component molten salts, Applied Energy, 87, 2010, 2812-2817.

 

[30] E. M. Levin, C. R. Robbins and H. F. McMordie, Phase Diagrams for Ceramists, American Ceramic Society, 1964

 

[31] J. C. Oxley, J. L. Smith, E. Rogers and M. Yu, Ammonium nitrate: thermal stability and explosivity modifiers, Thermochimica Acta, 384, 2002, 23-45

 

[32] L.G. Marianowski and H.C. Maru, Latent heat thermal energy storage systems above 450.8oC, Proceedings of 12th intersociety energy conversion engineering conference, 1977, 55-66

 

[33] H.C. Maru, J.F. Dullea, A. Kardas, L. Paul, L.G. Marianowski, E. Ong, et al. Molten salts energy storage systems. Chicago, Final Report of the Institute of Gas Technology, 1978.

 

[34] W.M. Philips and J.W. Stears, Advanced latent heat of fusion thermal energy storage for solar power stations, Proceedings of 20th intersociety energy conversion engineering conference 2, 1985, 384-391.

 

[35] K.E. Mayo, Heat source systems, USA Patent 3605720, 1971

 

[36] J.I. Eichelberger and H.D. Gillman, Investigation of metal fluoride thermal energy storage material, Proceedings of 12th intersociety energy conversion engineering conference, 1977, 567-574.

 

[37] G.R. Heidenreich and M.B. Parekh, Thermal energy storage for organic Rankine cycle solar dynamic space power systems, Proceedings of 21st intersociety energy conversion engineering conference 2, 1986, 791-797.

 

[38] I.K. Garkushin, A.C. Trunin, T.T. Miftakhov and M.A. Dibirov, Salt heat storage composition, USSR Patent 1036734, 1983.

 

[39] W. M. Philips and J. W. Stears, Advanced latent heat of fusion thermal energy storage for solar power stations. In: Proceedings of 20th intersociety energy conversion engineering conference 2, 1985, 384-391.

 

[40] Y. Takahashi, M. Kamimoto, Y. Abe, R. Sakamoto, K. Kanari and T. Ozawa, Investigation of latent heat-thermal energy storage materials IV, Thermoanalitical evaluation of binary eutectic mixtures of NaOH with LiOH or KOH, Thermochim Acta, 121, 1987, 193-202.

 

[41] C. E. Birchenall and A. F. Riechman, Heat storage in eutectic alloys, Metall Trans A, 11A(8), 1980, 1415-1420.

 

[42] Y. Takahashi, R. Sakamoto and M. Kamimoto, Heat capacities and latent heats of LiNO3, NaNO3, and KNO3, International Journal of Thermophysics, 9(6), 1988, 1081-1090

 

[43] D. W. James and C. H. Liu, Densities of Some Molten Alkali Nitrate and Sulphate Mixtures, Journal of Chemical Engineering Data, 8(3), 1963, 469.

 

[44] G. P. Smith and G. F. Petersen, Volumetric Properties of the Molten System (Li,K)-(Cl,NO3), Journal of Chemical Engineering Data, 6 (4), 1961, 493.

 

[45] G.F. Petersen, W.A. Ewing and G. P. Smith, Densities of Some Salt Mixtures, Journal of Chemical Engineering Data, 6 (4), 1961, 540

 

[46] G. J. Janz and M. R. Lorenz, Precise Measurement of Density and Surface Tension at Temperatures up to 1000°C in One Apparatus, Review of Scientific Instruments, 31 (1), 1960, 18-23.

 

[47] G. J. Janz, C. B. Allen, N. P. Bansal, R. M. Murphy and R. P. Tomkins, Physical Properties Data Compilations Relevant to Energy Storage, II. Molten Salts: Data on Single and Multi-Component Salt Systems, National Bureau of Standards, NSRDS-NBS 61 Part II, April, 1979.

 

[48] G. J. Janz, Thermodynamic and Transport Properties of Molten Salts: Correlation Equations for Critically Evaluated Density, Surface Tension, Electrical Conductance and Viscosity Data, Journal of Physical and Chemical Reference Data, 17, 1988, 2.

 

[49] A. T. Ward and G. J. Janz, Molten Carbonate Electrolytes: Electiral Conductance, Density and Surface Tension of Binary and Ternary, Eleclrochimica Acta, 10, 1965, 849-857.

 

[50] Y. Takahashi, R. Sakamoto and M.Kamimoto, Heat Capacities and Latent Heat of LiNO3, NaNO3 & KNO3, International Journal of Thermophysics, 9, 1998, 1081-1090.

 

[51] R. W. Carling, Heat capacities of NaNO3 and KNO3 up to 800 K, Thermochimica Acta, 60, 1983, 265-275.

 

[52] Y. Takahashi, Latent heat measurement by DSC with sapphire as standard material, Thermochim Acta, 88(1), 1985, 199-204.

 

[53] G.W. Hohne, W. Hemminger and H.J. Flammersheim, Differential Scanning Calorimetry, Springer-Verlag, Berlin, 1996.

 

[54] W. Hemminger and G. Hohne, Calorimetry Fundamentals and Practice, Verlag, Weinheim, 1984.

 

[55] M. Merzlyakov and C. Schick, Thermal conductivity from dynamic response of DSC, Thermochimica Acta 377, 2001, 183-191.

 

[56] T. Kousksou, A. Jamil, S. Gibout and Y. Zeraouli, Thermal analysis of phase change emulsion, Journal of Thermal Analysis and Calorimetry, 96, 2009, 841-852.

 

[57] A. Jamil, T. Kousksou, K. El Omari, Y. Zeraouli and Y. Le Guer, Heat transfer in salt solutions enclosed in DSC cells, Thermochimica Acta 507-508, 2010, 15-20.

 

[58] M.J. Richardson, Quantitative aspects of differential scanning calorimetry, Thermochimica Acta 300, 1997, 15-28.

 

[59] S. Rudtsch, Uncertainty of heat capacity measurements with differential scanning calorimeters, Thermochimica Acta 382, 2002, 17-25.

 

[60] M. J. Maeso and J. Largo, The phase diagram of LiNO3-NaNO3 and LiNO3-KNO3: the behavior of liquid mixtures, Thermochimica Acta, 223, (1993), 145-156

 

[61] O. J. Kleppa, A new twin high-temperature reaction calorimeter. The heats of mixing in liquid sodium-potassium nitrates, Journal of Physical Chemistry, 64(12), (1960), 1937-1940

 

[62] G. W. H. Hhne, H. K. Cammenga, W. Eysel, E. Gmelin and W. Hemminger; The Temperature Calibration of Scanning Calorimeters, Thermochimica Acta, 160, 1990, 1-12

 

[63] L. B. Pankratz, Thermodynamic Properties of Carbides, Nitrides, and Other Selected Substances, U. S. Bureau of Mines Bulletin, 696, 1994

 

[64] M. Zhang and R. G. Reddy, Thermodynamic properties of C4mim[Tf2N] ionic liquids, 0, 2, 2010, 71-76

 

[65] D. Mantha, T. Wang and R. G. Reddy, Thermodynamic Modeling of Eutectic Point in the LiNO3-NaNO3-KNO3 Ternary System, Journal of Phase Equilibria and Diffusion, 2011, (accepted).

 

[66] R. G. Reddy, T. Wang and D. Mantha, Determination of thermodynamic properties of 2KNO3.Mg(NO3)2, Thermochimica Acta, 2011, (submitted).

 

[67] T. Wang, D. Mantha and R. G. Reddy, Thermal stability of new LiNO3-NaNO3-KNO3 ternary salt for thermal energy storage system, (in preparation)

 

[68] G. D. Carvalho, E. Frollini and W. N. D. Santos, Thermal conductivity of polymers by hot-wire method, J. Appl. Poly. Sci., 62 (1996), 2281-2285.

 

[69] H. Bloom, A. Doroszkowski and S. B. Tricklebank, Molten salt mixtures. IX. The thermal conductivities of molten nitrate systems, Aus. J. Chem., 18(8) (1965), 1171-1176.

 

[70] A. G. Turnbull, Thermal conductivity of molten salts, Aus. J. Appl. Sci., 12 (1961), 30-41.

 

[71] L. R. White and H. T. Davis, Thermal conductivity of molten alkali nitrates, J. Chem. Phys., 47(1967), 5433-5439

 

[72] M. V. Peralta-Martinez, M. J. Assael, M. J. Dix, L. Karagiannidis and W. A. Wakeham, A Novel Instrument for the Measurement of the Thermal Conductivity of Molten Metal. Part1: Instrument‟s Description, Int. J. Thermophysics, 27 (2006), 353-375.

 

[73] Y. Tada, M. Harada, M. Tanlgakl and W. Eguchl, Laser Flash Method for Measuring Thermal Conductivity of Liquids: Application to Molten Salts, Industrial and Engineering Chemistry Fundamentals, 20, 1981, 333- 336.

 

[74] M. V. Smirnov, V. A. Khokhlov and E. S. Filatov, Thermal conductivity of molten alkali halides and their mixtures, Electrochimica Acta, 32 (1986), 1019-1026.

 

[75] E. Marti, E. Kaisersberger and W. D. Emmerich, NEW ASPECTS OF THERMAL ANALYSIS Part I. Resolution of DSC and means for its optimization, Journal of Thermal Analysis and Calorimetry, 77, 2004, 905-934

 

[76] E. Marti, E. Kaisersberger, G. Kaiser and W.Y. Ma, Netzsch Annual 2000 „Thermoanalytical Characterization of Pharmaceuticals‟ Netzsch-Gerätebau GmbH, D-95100 Selb/Bavaria

 

[77] P. J. van Ekeren, C. M. Holl and A. J. Witteveen, A comparative test of differential scanning calorimeters, Journal of Thermal Analysis and Calorimetry ,49, 1997, 1105-1114

 

[78] G. J. Janz, Thermodynamic and Transport Properties of Molten Salts: Correlation Equations for Critically Evaluated Density, Surface Tension, Electrical Conductance, and Viscosity Data, Journal of Physical and Chemical Reference Data, 17, 1988, 1.

 

[79] G. F. Petersen, W. A. Ewing and G. P. Smith, “Densities of Some Salt Mixtures,” Journal of Chemical and Engineering Data, 6, 1961, 540

 

[80] P. M. Nasch and S. G. Steinemann, Density and Thermal Expansion of Molten Manganese, Iron, Nickel, Copper, Aluminum and Tin by Means of the Gamma-Ray Attenuation Technique, Physics and Chemistry of Liquids, 29, 1995, 43-58

 

[81] G. P. Smith and G. F. Petersen, Volumetric Properties of the Molten System (Li,K)-(Cl,NO3), Journal of Chemical and Engineering Data, 6, 1961, 493-496

 

[82] D. A. Nissen, Thermophysical Properties of the Equimolar Mixture NaNO3-KNO3 from 300°C to 600°C, Journal of Chemical and Engineering Data, 27, 1982, 269-273.

 

[83] D. W. James and C. H. Liu, Densities of Some Molten Alkali Nitrate and Sulphate Mixtures, Journal of Chemical and Engineering Data, 8, 1963, 469

 

BIBLIOGRAFIA PIROLISI DELLA PLASTICA

 

[1] B. Kunwar, H. Cheng, S.R. Chandrashekaran, B.K. Sharma, Renew. Sust. Energy Rev. 54 (2016) 421–428.

 

[2] S. Al-Salem, A. Antelava, A. Constantinou, G. Manos, A. Dutta, J. Environ. Manage. 197 (2017) 177–198.

 

[3] F.J. Passamonti, U. Sedran, Appl Catal. B: Environ. 125 (2012) 499–506.

 

[4] C. Wu, M.A. Nahil, N. Miskolczi, J. Huang, P.T. Williams, Environ. Sci. Technol. 48 (2013) 819–826.

 

[5] J.C. Acomb, C. Wu, P.T. Williams, J. Anal Appl. Pyrol. 113 (2015) 231–238.

 

[6] C. Wu, M.A. Nahil, N. Miskolczi, J. Huang, P.T. Williams, Process Saf. Environ. Part A 103 (2016) 107–114.

 

[7] S. Iijima, Nature 354 (1991) 56.

 

[8] S. Kumar, R. Rani, N. Dilbaghi, K. Tankeshwar, K.-H. Kim, Chem. Soc. Rev. 46 (2017) 158–196.

 

[9] M.F. De Volder, S.H. Tawfick, R.H. Baughman, A.J. Hart, Science 339 (2013) 535–539.

 

[10] K.A. Shah, B.A. Tali, Mater. Sci. Semicon. Proc. 41 (2016) 67–82.

 

[11] G. Wang, H. Wang, Z. Tang, W. Li, J. Bai, Appl. Catal. B: Environ. 88 (2009) 142–151.

 

[12] J. Liu, Z. Jiang, H. Yu, T. Tang, Polym. Degrad. Stabil. 96 (2011) 1711–1719.

 

[13] R.-X. Yang, K.-H. Chuang, M.-Y. Wey, Energy Fuel (2015).

 

[14] Q. Weizhong, L. Tang, W. Zhanwen, W. Fei, L. Zhifei, L. Guohua, L. Yongdan, Appl. Catal. A: Gen. 260 (2004) 223–228.

 

[15] Y. Shen, A.C. Lua, Appl. Catal. B: Environ. 164 (2015) 61–69.

 

[16] C. Wu, P.T. Williams, Int. J. Hydrogen Energy 35 (2010) 949–957.

 

[17] M.A. Nahil, C. Wu, P.T. Williams, Fuel Process. Technol. 130 (2015) 46–53.

 

[18] J.C. Acomb, C. Wu, P.T. Williams, Appl. Catal. B: Environ. 147 (2014) 571–584.

 

[19] Y. Zhang, P.T. Williams, J. Anal Appl. Pyrol. 122 (2016) 490–501.

 

[20] K. Hernadi, A. Fonseca, J.B. Nagy, A. Siska, I. Kiricsi, Appl. Catal. A: Gen. 199 (2000) 245–255.

 

[21] J. Gong, J. Liu, Z. Jiang, J. Feng, X. Chen, L. Wang, E. Mijowska, X. Wen, T. Tang, Appl. Catal. B: Environ. 147 (2014) 592–601.

 

[22] M. Chhowalla, K. Teo, C. Ducati, N. Rupesinghe, G. Amaratunga, A. Ferrari, D. Roy, J. Robertson, W. Milne, J. Appl. Phys. 90 (2001) 5308–5317.

 

[23] X. Wen, X. Chen, N. Tian, J. Gong, J. Liu, M.H. Rümmeli, P.K. Chu, E. Mijiwska, T. Tang, Environ. Sci. Technol. 48 (2014) 4048–4055.

 

[24] J.C. Acomb, C. Wu, P.T. Williams, Appl. Catal. B: Environ. 180 (2016) 497–510.

 

[25] A.C. Lua, H.Y. Wang, Appl. Catal. B: Environ. 156 (2014) 84–93.

 

[26] R. Cartwright, S. Esconjauregui, D. Hardeman, S. Bhardwaj, R. Weatherup, Y. Guo, L. D’, Arsié, B. Bayer, P. Kidambi, S. Hofmann, E. Wright, J. Clarke, D. Oakes, C. Cepek, J. Robertson, Carbon 81 (2015) 639–649.

 

[27] C. Wu, P.T. Williams, Appl. Catal. B: Environ. 96 (2010) 198–207.

 

[28] C. Wu, P.T. Williams, Appl. Catal. B: Environ. 87 (2009) 152–161.

 

[29] B. Kaya, S. Irmak, A. Hasanoğlu, O. Erbatur, Int. J. Hydrogen Energy 40 (2015) 3849–3858.

 

[30] Y. Shen, P. Zhao, Q. Shao, F. Takahashi, K. Yoshikawa, Appl. Energy 160 (2015) 808–819.

 

[31] W. Shen, F.E. Huggins, N. Shah, G. Jacobs, Y. Wang, X. Shi, G.P. Huffman, Appl. Catal. A: Gen. 351 (2008) 102–110.

 

[32] C. He, N. Zhao, Y. Han, J. Li, C. Shi, X. Du, Mater. Sci Eng. A: Struct. 441 (2006) 266–270.

 

[33] C.L. Cheung, A. Kurtz, H. Park, C.M. Lieber, J. Phys. Chem. B 106 (2002) 2429–2433.

 

[34] D. Chen, K.O. Christensen, E. Ochoa-Fernández, Z. Yu, B. Tøtdal, N. Latorre, A. Monzón, A. Holmen, J. Catal. 229 (2005) 82–96.

 

[35] S. Takenaka, M. Ishida, M. Serizawa, E. Tanabe, K. Otsuka, J. Phys. Chem. B 108 (2004) 11464–11472.

 

[36] M.A. Ermakova, D.Y. Ermakov, A.L. Chuvilin, G.G. Kuvshinov, J. Catal. 201 (2001) 183–197.

 

[37] D. Yao, C. Wu, H. Yang, Y. Zhang, M.A. Nahil, Y. Chen, P.T. Williams, H. Chen, Energy Convers. Manage. 148 (2017) 692–700.

 

[38] L.G. Briquet, C.R.A. Catlow, S.A. French, J. Phys. Chem. C 112 (2008) 18948–18954.

 

[39] C. Wu, P.T. Williams, Fuel 89 (2010) 1435–1441.

 

[40] A.L. Alberton, M.M. Souza, M. Schmal, Catal. Today 123 (2007) 257–264.

 

[41] Y. Liu, J. Gao, Q. Liu, F. Gu, X. Lu, L. Jia, G. Xu, Z. Zhong, F. Su, RSC Adv. 5 (2015) 7539–7546.

 

[42] J. Gao, C. Jia, M. Zhang, F. Gu, G. Xu, F. Su, Catal. Sci. Technol. 3 (2013) 2009–2015.

 

[43] M. Al-Dossary, J. Fierro, Appl. Catal. A: Gen. 499 (2015) 109–117.

 

[44] Y. Zhang, C. Wu, A. Nahil, P.T. Williams, Energy Fuel 29 (2015) 3328–3334.

 

[45] P. Bolt, F. Habraken, J. Geus, J. Catal. 151 (1995) 300–306.

 

[46] L. Garcia, A. Benedicto, E. Romeo, M. Salvador, J. Arauzo, R. Bilbao, Energy Fuel 16 (2002) 1222–1230.

 

[47] L. Wang, D. Li, M. Koike, S. Koso, Y. Nakagawa, Y. Xu, K. Tomishige, Appl. Catal. A: Gen. 392 (2011) 248–255.

 

[48] M. Sánchez-Sánchez, R. Navarro, J. Fierro, Int. J. Hydrogen Energy 32 (2007) 1462–1471.

 

[49] M. Kong, J. Fei, S. Wang, W. Lu, X. Zheng, Bioresour. Technol. 102 (2011) 2004–2008.

 

[50] W. Li, H. Wang, Z. Ren, G. Wang, J. Bai, Appl. Catal. B: Environ. 84 (2008) 433–439.

 

[51] A.E. Awadallah, A.A. Aboul-Enein, A.K. Aboul-Gheit, Energy. Convers. Manage. 77 (2014) 143–151.

 

[52] P.B. Amama, C.L. Pint, S.M. Kim, L. McJilton, K.G. Eyink, E.A. Stach, R.H. Hauge, B. Maruyama, ACS Nano 4 (2010) 895–904.

 

[53] J. Gong, J. Liu, D. Wan, X. Chen, X. Wen, E. Mijowska, Z. Jiang, Y. Wang, T. Tang, Appl. Catal. A: Gen. 449 (2012) 112–120.

 

[54] Y. Shen, W. Gong, B. Zheng, L. Gao, Appl. Catal. B: Environ. 181 (2016) 769–778.

 

[55] M. Pudukudy, Z. Yaakob, M.S. Takriff, Energy Convers. Manage. 126 (2016) 302–315.

 

[56] M. Perez-Cabero, I. Rodrıguez-Ramos, A. Guerrero-Ruız, J. Catal. 215 (2003) 305–316.

 

[57] Y.-H. Chung, S. Jou, Mater. Chem. Phys. 92 (2005) 256–259.

 

[58] N. De Greef, L. Zhang, A. Magrez, L. Forró, J.-P. Locquet, I. Verpoest, J.W. Seo, Diam. Relat. Mater. 51 (2015) 39–48.

 

[59] C. Lu, J. Liu, J. Phys. Chem. B 110 (2006) 20254–20257.

 

BIBLOGRAFIA CATALIZZATORI PER PIROLISI DELLA PLASTICA

 

[1] Plastics Europe, 2016 plastics Europe, (2016).

 

[2] Plastics Europe, 2015 Plastics Europe, (2015).

 

[3] T. Namioka, A. Saito, Y. Inoue, Y. Park, T.J. Min, S.A. Roh, K. Yoshikawa, Appl. Energy 88 (2011) 2019.

 

[4] J. Liu, Z.W. Jiang, H.O. Tang, T. Tang, Polym. Degrad. Stab. 96 (2011) 1711.

 

[5] M.Y. He, Z.Q. Hu, B. Xiao, J.F. Li, X.J. Guo, S.Y. Luo, F. Yang, Y. Feng, G.J. Yang, S.M. Liu, Int. J. Hydrogen Energy 34 (2009) 195.

 

[6] A.M. Brass, J. Chene, Mater. Sci. Eng. A-Struct. 242 (1998) 210.

 

[7] T. Namioka, A. Saito, Y. Inoue, Y. Park, T.-j. Min, S.-a. Roh, K. Yoshikawa, Appl. Energy 88 (2011) 2019.

 

[8] Y. Park, T. Namioka, S. Sakamoto, T.-j. Min, S.-a. Roh, K. Yoshikawa, Fuel Process. Technol. 91 (2010) 951.

 

[9] G. Elordi, M. Olazar, M. Artetxe, P. Castaño, J. Bilbao, Appl. Catal. A: Gen. 415–416 (2012) 89.

 

[10] H. Ago, N. Uehara, N. Yoshihara, M. Tsuji, M. Yumura, N. Tomonaga, T. Setoguchi, Carbon 44 (2006) 2912.

 

[11] J.C. Acomb, C.F. Wu, P.T. Williams, Appl. Catal. B-Environ. 180 (2016) 497.

 

[12] I. Barbarias, G. Lopez, M. Artetxe, A. Arregi, L. Santamaria, J. Bilbao, M. Olazar, J. Anal. Appl. Pyrol. 122 (2016) 502.

 

[13] C. Wu, P.T. Williams, Appl. Catal. B: Environ. 87 (2009) 152.

 

[14] C. Wu, P.T. Williams, Appl. Catal. B: Environ. 96 (2010) 198.

 

[15] C. Wu, P.T. Williams, Int. J. Hydrogen Energy 34 (2009) 6242.

 

[16] S. Kumagai, J. Alvarez, P.H. Blanco, C. Wu, T. Yoshioka, M. Olazar, P.T. Williams, J. Anal. Appl. Pyrol. 113 (2015) 15.

 

[17] M.A. Nahil, C. Wu, P.T. Williams, Fuel Process. Technol. 130 (2015) 46.

 

[18] C. Wu, P.T. Williams, Appl. Catal. B: Environ. 90 (2009) 147.

 

[19] R.V. Salvatierra, G. Zitzer, S.A. Savu, A.P. Alves, A.J.G. Zarbin, T. Chassé, M.B. Casu, M.L.M. Rocco, Synthetic Met. 203 (2015) 16.

 

[20] A. Aqel, K.M.M.A. El-Nour, R.A.A. Ammar, A. Al-Warthan, Arabian J. Chem. 5 (2012) 1.

 

[21] K.A. Shah, B.A. Tali, Mater. Sci. Semicon. Proc. 41 (2016) 67.

 

[22] Q. Zhao, T. Jiang, C. Li, H. Yin, J. Ind. Eng. Chem. 17 (2011) 218.

 

[23] F. Danafar, A. Fakhru’l-Razi, M.A. Mohd Salleh, D.R. Awang Biak, Chem. Eng. Res. Des. 89 (2011) 214.

 

[24] A. Gorbunov, O. Jost, W. Pompe, A. Graff, Appl. Surf. Sci. 197–198 (2002) 563.

 

[25] R.T.K. Baker, J. Catal. 37 (1975) 101.

 

[26] M.S. Kim, N.M. Rodriguez, R.T.K. Baker, J. Catal. 131 (1991) 60.

 

[27] E.F. Kukovitskii, L.A. Chernozatonskii, S.G. L'Vov, N.N. Mel'nik, Chem. Phys. Lett. 266 (1997) 323.

 

[28] J. Liu, Z. Jiang, H. Yu, T. Tang, Polym. Degrad. Stabil. 96 (2011) 1711.

 

[29] N. Mishra, G. Das, A. Ansaldo, A. Genovese, M. Malerba, M. Povia, D. Ricci, E. Di Fabrizio, E. Di Zitti, M. Sharon, M. Sharon, J. Anal. Appl. Pyrol. 94 (2012) 91.

 

[30] S. Takenaka, M. Serizawa, K. Otsuka, J. Catal. 222 (2004) 520.

 

[31] J.C. Acomb, C. Wu, P.T. Williams, Appl. Catal. B: Environ. 147 (2014) 571.

 

[32] J.M. Saad, M.A. Nahil, P.T. Williams, J. Anal. Appl. Pyrol. 113 (2015) 35.

 

[33] A. Erkiaga, G. Lopez, I. Barbarias, M. Artetxe, M. Amutio, J. Bilbao, M. Olazar, J. Anal. Appl. Pyrol. 116 (2015) 34.

 

[34] R.R. Soares, D.F. Martins, D.E.S. Pereira, M.B. Almeida, Y.L. Lam, J. Mol. Catal. A: Chem. 422 (2016) 142.

 

[35] C. Wu, L. Dong, J. Onwudili, P.T. Williams, J. Huang, ACS Sustain. Chem. Eng. 1 (2013) 1083.

 

[36] L. Karam, S. Casale, H. El Zakhem, N. El Hassan, J. CO2 Util. 17 (2017) 119.

 

[37] F. Auprêtre, C. Descorme, D. Duprez, Catal. Commun. 3 (2002) 263.

 

[38] J.C. Acomb, C. Wu, P.T. Williams, Appl. Catal. B: Environ. 180 (2016) 497.

 

[39] C.J. Lee, J. Park, J.A. Yu, Chem. Phys. Lett. 360 (2002) 250.

 

[40] F. Danafar, A. Fakhru’l-Razi, M.A.M. Salleh, D.R.A. Biak, Chem. Eng. J. 155 (2009) 37.

 

[41] M. Anna, G.N. Albert, I.K. Esko, J. Phys.: Condens. Matter 15 (2003) S3011.

 

[42] W.-W. Liu, A. Aziz, S.-P. Chai, A.R. Mohamed, U. Hashim, J. Nanomater. 2013 (2013) 8.

 

[43] W.Y. Liu, J.L. Jiang, Neural Comput. Appl. (2013) 1.

 

[44] W.X. Liu, T.J. Chin, G. Carneiro, D. Suter, Point correspondence validation under unknown radial distortion, Digital Image Computing: Techniques and Applications (DICTA), 2013 International Conference, 26–28 Nov, 2013, 2013, p. 1.

 

[45] A.L.M. da Silva, J.P. den Breejen, L.V. Mattos, J.H. Bitter, K.P. de Jong, F.B. Noronha, J. Catal. 318 (2014) 67.

 

[46] D.L. Trimm, Catal. Today 37 (1997) 233.

 

[47] D. Chen, K.O. Christensen, E. Ochoa-Fernández, Z. Yu, B. Tøtdal, N. Latorre, A. Monzón, A. Holmen, J. Catal. 229 (2005) 82.

 

[48] C.L. Cheung, A. Kurtz, H. Park, C.M. Lieber, J. Phys. Chem. B 106 (2002) 2429.

 

[49] F. Ding, A. Rosen, K. Bolton, J. Chem. Phys. 121 (2004) 2775. X. Liu et al. Journal of Analytical and Applied Pyrolysis 125 (2017) 32–39

© B.R.I.D.G.E. ENGINEERING  s.r.l. (Building Research Innovation Development Green Energy) Startup Innovativa